Examples in Noncommutative Localization

JOHN A. BEACHY AND WILLIAM D. BLAIR

Department of Mathematical Sciences,
Northern Illinois University, DeKalb, Illinois 60115

Communicated by A. W. Goldie
Received May 25, 1984

Examples are given to show that Goldie's localization at a prime ideal need not be Noetherian even for a ring finitely generated as a module over its Noetherian center. © 1986 Academic Press, Inc.

In [3] and [4] Goldie defined a localization Q of a left- and right-Noetherian ring R at a prime ideal P in the following manner. If $P^{(n)}$ is the nth symbolic power of P, then $R/P^{(n)}$ has an Artinian classical quotient ring $Q_0(R/P^{(n)})$, for each positive integer n, and there is a canonical epimorphism $Q_0(R/P^{(n+1)}) \to Q_0(R/P^{(n)})$. Let Q^* be the inverse limit of the rings $\{Q_0(R/P^{(n)})\}_{n=1}^{\infty}$ under these epimorphisms, and let $\mu: R \to Q^*$ be the induced homomorphism. The Goldie localization Q is defined as the intersection of all subrings T of Q^* such that

(i) $\mu(R) \subseteq T$ and $\mu(P) \subseteq J(T) \subseteq J(Q^*)$ for the Jacobson radical $J(T)$

and

(ii) $T/J(T)$ is simple Artinian and $\bigcap_{n=1}^{\infty} J(T)^n = (0)$. In [3] Goldie asked whether the localization Q he defined at a prime ideal P of a Noetherian ring R must also be Noetherian. Our first example is of a ring R which is finitely generated as a module over its Noetherian center for which the localization Q at a maximal ideal fails to be either right or left Noetherian. Our second example is one where the localization Q is Noetherian on one side only.

Small and Stafford [5] have constructed several interesting noncommutative rings utilizing an example of Nagata. Our second example is one of the rings constructed by Small and Stafford [5] and our first example is inspired by their idea.

Nagata has constructed a pair of commutative Noetherian domains $A \subset B$ such that A is a local ring with maximal ideal I, and B is finitely generated as a module over A, with two maximal ideals P, P' such that $P \cap P' = I$, and $B/P \cong A/I$. See Zariski–Samuel [6] for a discussion of this example. We fix this notation.
As a final preliminary we recall a few facts about the inversive localization $R_{\Gamma(P)}$ of R at the prime ideal P, introduced by Cohn in [2]. If $\Gamma(P)$ denotes the set of matrices (of all sizes) regular modulo P, then $R_{\Gamma(P)}$ is the ring universal with respect to the property that all matrices in $\Gamma(P)$ are invertible over $R_{\Gamma(P)}$. Beachy [1] has shown that if P is a prime ideal of the Noetherian ring R with inversive localization $R_{\Gamma(P)}$ and Goldie localization Q at P then $Q \approx R_{\Gamma(P)}$ if any only if $\bigcap_{n=1}^{\infty} J(R_{\Gamma(P)})^n = (0)$.

Example 1. Let R denote the set of all matrices of the form

$$
\begin{bmatrix}
 b & 0 & 0 \\
 x & a & 0 \\
 y & z & c
\end{bmatrix},
$$

where $b, c \in B$, $a \in A$, $x, y, z \in P$ and $b-a, c-a \in P$. Here A, B, P are the domains and maximal ideal, respectively, of Nagata's example. Let M be the maximal ideal of R consisting of all matrices of the form

$$
\begin{bmatrix}
 b & 0 & 0 \\
 x & a & 0 \\
 y & z & c
\end{bmatrix},
$$

where $b, x, y, z, c \in P$ and $a \in I$. The ideal M is the kernel of the natural projection from R onto A/I and so R/M is a field. It is easy to see that R is right and left Noetherian since it is finitely generated as a module over its center A.

Let $\mathcal{C}(M)$ denote the set of elements of R which are regular modulo M. It is clear that

$$
\begin{bmatrix}
 b & 0 & 0 \\
 x & a & 0 \\
 y & z & c
\end{bmatrix} \in \mathcal{C}(M)
$$

if and only if $a \notin I$. Also note that

$$
\begin{bmatrix}
 b & 0 & 0 \\
 x & a & 0 \\
 y & z & c
\end{bmatrix} = \begin{bmatrix}
 ba^{-1} & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 a & 0 & 0 \\
 x & a & 0 \\
 y & z & a
\end{bmatrix} \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & ca^{-1}
\end{bmatrix}
$$

and that

$$
\begin{bmatrix}
 a & 0 & 0 \\
 x & a & 0 \\
 y & z & a
\end{bmatrix}^{-1} = \begin{bmatrix}
 a^{-1} & 0 & 0 \\
 -xa^{-2} & a^{-1} & 0 \\
 xza^{-3} - ya^{-2} & -za^{-2} & a^{-1}
\end{bmatrix}
$$
when $a \neq I$. Thus to invert elements of $\mathcal{C}(M)$ we may restrict ourselves to matrices of the form

$$\begin{bmatrix} d & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & d \end{bmatrix},$$

where $d - 1 \in P$.

Set $\Sigma = \{d \in B \mid d - 1 \in P\}$. Let R_{Σ} be the ring of all matrices

$$\begin{bmatrix} bd^{-1} & 0 & 0 \\ xd^{-1} & a & 0 \\ yd^{-1} & zd^{-1} & cd^{-1} \end{bmatrix},$$

where $b, c \in B, a \in A, x, y, z \in P, d \in \Sigma$ and $bd^{-1} - a, cd^{-1} - a \in P_{\Sigma}$. Since

$$\begin{bmatrix} P_{\Sigma} & 0 & 0 \\ P_{\Sigma} & I & 0 \\ P_{\Sigma} & P_{\Sigma} & P_{\Sigma} \end{bmatrix}$$

is a quasiregular maximal ideal of R_{Σ}, it is the Jacobson radical, $J(R_{\Sigma})$, of R_{Σ}. It is easy to verify that $\bigcap_{n=1}^{\infty} J(R_{\Sigma})^{n} = (0)$, since $\bigcap_{n=1}^{\infty} P_{\Sigma}^{n} = (0)$.

Let D be an $n \times n$ matrix over R which is regular modulo M. Since $M_{n}(R)/M_{n}(M) \cong M_{n}(R/M) \cong M_{n}(R_{\Sigma}/M_{\Sigma}) \cong M_{n}(R_{\Sigma})/J(M_{n}(R_{\Sigma}))$, D is invertible in $M_{n}(R_{\Sigma})$. Thus, to show that R_{Σ} is the inversive localization of R with respect to M, we must show that given any ring T and any homomorphism $\phi: R \to T$ such that $\phi(D)$ is invertible over T for any matrix D which is regular modulo M, there exists a unique extension $\bar{\phi}: R_{\Sigma} \to T$ such that $\bar{\phi} |_{R} = \phi$. Let such a homomorphism ϕ be given and suppose that

$$X = \begin{bmatrix} bd^{-1} & 0 & 0 \\ xd^{-1} & a & 0 \\ yd^{-1} & zd^{-1} & cd^{-1} \end{bmatrix} \in R_{\Sigma}.$$

Let $X = AD^{-1} + B$ for the matrices

$$A = \begin{bmatrix} b & 0 & 0 \\ x & a & 0 \\ y & 0 & c \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{bmatrix}, \quad \text{and} \quad D = \begin{bmatrix} d & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & d \end{bmatrix},$$

where D is regular modulo M. Define $\bar{\phi}$ by $\bar{\phi}(X) = \phi(A) \phi(D)^{-1} + \phi(D)^{-1} \phi(B)$. It is not hard to show that $\bar{\phi}$ is well defined.
and additive. To show that \(\phi \) is multiplicative we note the following "partial" Ore conditions in \(R \). We have \(DB = (DB)D \) and \(AD = DA' \), for

\[
A' = \begin{bmatrix}
 b & 0 & 0 \\
 dx & a & 0 \\
 y & 0 & c
\end{bmatrix}.
\]

Using the above notation, with subscripts, for matrices \(X_1 = A_1 D_1^{-1} + D_1^{-1} B_1 \) and \(X_2 = A_2 D_2^{-1} + D_2^{-1} B_2 \), we have

\[
\phi(X_1) \phi(X_2) = \phi(A_1 A_2') \phi(D_1 D_2)^{-1} + \phi(A_1) \phi(D_1 D_2)^{-1} \phi(B_2) + \phi(D_1)^{-1} \phi(B_1 A_2) \phi(D_2)^{-1} + \phi(D_1)^{-1} \phi(B_1) \phi(B_2).
\]

Expanding the last three terms we have

\[
\phi(A_1) \phi(D_1 D_2)^{-1} \phi(B_2)
= \phi \left(\begin{bmatrix} b_1 & 0 & 0 \\ x_1 & a_1 & 0 \\ y_1 & 0 & c_1 \end{bmatrix} \right) \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & d_1 d_2 \end{bmatrix} \right)^{-1}
\times \left(\begin{bmatrix} d_1 d_2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & z_2 & 0 \end{bmatrix} \right)
= \phi \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & d_1 d_2 \end{bmatrix} \right) \phi \left(\begin{bmatrix} b_1 & 0 & 0 \\ x_1 & a_1 & 0 \\ y_1 d_1 d_2 & 0 & c_1 \end{bmatrix} \right) \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & z_2 & 0 \end{bmatrix} \right)
\times \left(\begin{bmatrix} d_1 d_2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)^{-1}
= \phi(D_1 D_2)^{-1} \phi \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & c_1 z_2 & 0 \end{bmatrix} \right),
\]

\[
\phi(D_1)^{-1} \phi(B_1 A_2) \phi(D_2)^{-1}
= \phi \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ z_1 x_2 & 0 & 0 \end{bmatrix} \phi(D_1 D_2)^{-1} + \phi(D_1 D_2)^{-1} \phi \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & d_2 z_1 a_2 & 0 \end{bmatrix} \right)
and \(\phi(B_1, B_2) = 0 \). Collecting terms, we obtain \(\phi(X_1) \phi(X_2) = \phi(X_1, X_2) \). It is routine to check that \(\phi \) is an extension of \(\phi \). By the result of Beachy [1], \(R_X \) is the Goldie localization of \(R \) at the maximal ideal \(M \).

To see that \(R_X \) is not left Noetherian, consider the left \(R_X \)-module

\[
\begin{bmatrix}
0 & 0 & 0 \\
\Sigma & 0 & 0 \\
\Sigma & 0 & 0 \\
\end{bmatrix}
\] / \[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\Sigma & 0 & 0 \\
\end{bmatrix}
\]

which has the structure of the left \(A \)-module \(P_{\Sigma} \). If \(P_{\Sigma} \) were left Noetherian as \(A \)-module, this would force \(B_{\Sigma} \) to be Noetherian as a \(B \)-module since \(B_{\Sigma}/P_{\Sigma} \approx B/P \). This would, in turn, force \(B_{\Sigma} = B \), which is impossible, since there exists an element \(c \) in the prime ideal \(P' \) such that \(c - 1 \in P \), and then \(c \) is invertible in \(B_{\Sigma} \) but not in \(B \). By considering the right \(R_X \)-module

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\Sigma & \Sigma & 0 \\
\end{bmatrix}
\] / \[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\Sigma & 0 & 0 \\
\end{bmatrix}
\]

we see that \(R \) is not right Noetherian.

EXAMPLE 2. We continue with the notation of the Nagata example. Let \(R \) be the set of all matrices of the form \(\begin{bmatrix} b & 0 \\ x & a \end{bmatrix} \), where \(b \in B, x \in P, a \in A \) and \(b - a \in P \). Let \(M \) be the maximal ideal of \(R \) consisting of all matrices of the form \(\begin{bmatrix} b & 0 \\ x & a \end{bmatrix} \) such that \(b, x \in P \) and \(a \in I \). The ideal \(M \) is the kernel of the natural projection from \(R \) onto \(A/I \), and so \(R/M \) is a field.

Let \(\mathcal{C}(M) \) denote the set of elements regular modulo \(M \). Then \(\begin{bmatrix} b & 0 \\ x & a \end{bmatrix} \in \mathcal{C}(M) \) if and only if \(a \notin I \). Note that

\[
\begin{bmatrix} b & 0 \\ x & a \end{bmatrix} = \begin{bmatrix} ba^{-1} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ x & a \end{bmatrix},
\]

and that the second matrix is invertible. Thus to check that \(\mathcal{C}(M) \) is a right Ore set it is only necessary to check that the right Ore condition holds for matrices of the form \(\begin{bmatrix} b & 0 \\ x & a \end{bmatrix} \), where \(b - 1 \in P \). To construct the right ring of fractions of \(R \) it is only necessary to invert matrices of this form.

Let \(\Sigma = \{ d \in B \mid d - 1 \in P \} \). The right ring of fractions \(R_M \) of \(R \) at \(M \) is the ring \(S \) of all matrices of the form \(\begin{bmatrix} bd^{-1} & 0 \\ xd^{-1} & a \end{bmatrix} \), where \(bd^{-1} \in B_{\Sigma}, xd^{-1} \in P_{\Sigma}, a \in A \) and \(bd^{-1} - a \in P_{\Sigma} \). Each element of \(\mathcal{C}(M) \) of the form \(\begin{bmatrix} b & 0 \\ x & a \end{bmatrix} \), \(b - 1 \in P \) is invertible in \(S \) since if \(b - 1 \in P \) then \(b^{-1} - 1 = b^{-1}(1 - b) \in P_{\Sigma} \). For \(\begin{bmatrix} bd^{-1} & 0 \\ xd^{-1} & a \end{bmatrix} \in S \), we have

\[
\begin{bmatrix} bd^{-1} & 0 \\ xd^{-1} & a \end{bmatrix} = \begin{bmatrix} b & 0 \\ x & a \end{bmatrix}^{-1} \begin{bmatrix} d & 0 \\ 0 & 1 \end{bmatrix}^{-1},
\]
where \([\begin{array}{c} b \\ a \end{array} \in R\) since \(bd^{-1} - a \in P\) implies \(b - a \in P\) and then adding \(ad - a = a(d - 1) \in P\) shows that \(b - a \in P\). Thus \(S = R_M\).

The inversive localization of \(R\) at \(M\) coincides with the right Ore localization at \(\mathfrak{C}(M)\) whenever the latter exists, and thus \(R_M\) is the inversive localization of \(R\) at \(M\) and is right Noetherian since the classical localization of a right Noetherian ring is right Noetherian. As in Example 1, the inversive localization \(R_M\) of \(R\) at \(M\) is the Goldie localization of \(R\) at \(M\) since \(\bigcap_{i=1}^{\infty} H(R_M)^n = (0)\). To see that \(R_M\) is not left Noetherian we consider the left ideal \([\begin{array}{c} 0 \\ P \end{array}]\) of \(R_M\). This has the structure of the left \(A\)-module \(P_X\), and as before, is not Noetherian.

REFERENCES