The Deflection of a Light Ray by the Sun

This project investigates how a ray of light from a distant source may be curved by the gravitational field of a large body (say a star). For simplicity, we assume that the mass of the body is concentrated at a point S, and that the light ray would travel the infinite straight line ℓ if there were no deflection. Let r be the shortest distance from S to ℓ:

![Diagram of light ray deflection]

We assume that the ray is bent into a curve which has two asymptotes, ℓ and a, which meet in an angle α as shown.

We seek an equation which will give α as a function of the other relevant variables. Two of these variables are clearly the mass m of the body, and the distance r.

1. Show that if the method of dimensional analysis is applied to the set of variables α, m, r, then no reasonable solution is produced. Conclude that some essential variables must have been left out.

2. Since α, m, r are the only apparent physical variables, the other variables might be physical constants. Two likely candidates are c, the speed of light, and G, the gravitation constant which appears in Newton’s Law of Universal Gravitation: $F = G \frac{m_1 m_2}{l^2}$, where F is gravitational force between two bodies, m_1 and m_2 are their masses, and l is the distance between them.

 (a) Find the dimensions of c and of G.

 (b) Apply dimensional analysis to each of the sets $\{\alpha, m, r, c\}$ and $\{\alpha, m, r, G\}$. What can you conclude?

3. Apply the method of dimensional analysis to the set of variables α, m, r, G and c, and derive

 $\alpha = \psi \left(\frac{G m}{c^2 r} \right)$ \hspace{1cm} (I)

 where ψ is an unknown function.

4. To proceed from (I), and derive a specific formula (or at least an approximation) for ψ, we need to make some observations, and a couple of assumptions.
(a) Argue from the physical systems being described why each of the following should be true:

i. \(\psi(x) \) is defined for all real \(x \geq 0 \), and the range of \(\psi \) is \([0, \pi/2)\).

ii. \(\psi(x) \) increases as \(x \) increases

iii. \(\lim_{x \to 0} \psi(x) = 0 = \psi(0) \) (Hint: what if \(m \) is very small, or \(r \) is very large?)

(b) Assume that \(\psi(x) \) is differentiable, for all \(x \geq 0 \). Explain why this is reasonable, and why it must follow that \(\frac{d}{dx}(\psi(x)) \geq 0 \) for all \(x \geq 0 \).

(c) Assume that
\[
\lim_{x \to 0} \frac{d}{dx}(\psi(x)) = J = \psi'(0), \quad J \text{ a positive number.} \tag{II}
\]

i. If \(\lim_{x \to 0} \frac{d}{dx}(\psi(x)) \) is going to exist at all, what other possibilities are there?

ii. Given assumption (II), give an argument to explain why, for large \(r \), we have
\[
\alpha \approx J \frac{Gm}{c^2r} \tag{III}
\]

(Hint: consider the graph of \(\psi(x) \) for small \(x \).)

(d) In gram/cm/sec/ units, \(G \approx 7 \times 10^{-11} m^3kg^{-1}s^{-2} \), \(c \approx 3 \times 10^8 m/s \), and the mass of the sun is \(m \approx 2 \times 10^{30} kg \). Suppose for an observed ray of starlight passing by the sun, \(r \approx 7 \times 10^8 m \) and \(\alpha \approx 1.7 \) seconds of arc. Compute \(\frac{Gm}{c^2r} \) and apply (III) to compute \(J \).

(e) Suppose a light ray passes by a massive galaxy that is \(10^{12} \) times the mass of the sun at a distance of \(2.1 \times 10^{21} m \). How large will the deflection be? Express the answer in arc seconds.